Table 2. Selected geometric parameters (Å, °)

	0	1	, ,
S-01	1.498 (2)	C9-C10+	1.507 (2)
SC8	1.7766 (15)	C10-C14	1.532 (3)
SC1	1.787 (2)	C10-C11	1.545 (2)
C1—C2	1.373 (2)	CI1C15	1.525 (2)
C1C6	1.375 (3)	C11—C12	1.541 (2)
C2C3	1.380 (3)	C12C16	1.518 (2)
C3C4	1.382 (3)	C12C13	1.538 (2)
C4—C5	1.384 (5)	C15-03	1.209 (2)
C4C7	1.517 (3)	C15—N	1.370 (3)
C5C6	1,383 (4).	C16—O2	1.197 (3)
C8C9	1.325 (2)	C16N	1.370 (2)
C8C13	1.495 (2)		
O1SC8	106.49 (9)	C9-C10-C14	112.5 (2)
01 S C1	106.21 (8)	C9-C10-C11	109.49 (12)
C8—S—C1	98.10 (7)	C14-C10-C11	114.68 (15)
C2C1C6	120.3 (2)	C15-C11-C12	103.77 (13)
C2C1S	120.13 (13)	C15-C11-C10	114.44 (14)
C6C1S	119.5 (2)	C12C11C10	113.17 (11)
C1C2C3	120.0 (2)	C16-C12-C13	108.95 (14)
C4—C3—C2	121.1 (2)	C16-C12-C11	105.10 (12)
C3C4C5	117.7 (2)	C13-C12-C11	114.61 (12)
C3C4 C7	120.1 (3)	C8C13C12	110.78 (13)
C5C4C7	122.2 (3)	O3C15N	124.2 (2)
C6C5C4	121.9 (2)	O3C15C11	127.0 (2)
C1C6C5	118.9 (2)	NC15C11	108.68 (15)
C9C8C13	120.42 (14)	02C16N	125.6 (2)
C9—C8—S	119.56 (13)	O2C16C12	126.2 (2)
C13-C8-S	120.02 (12)	NC16C12	108.1 (2)
C8-C9-C10	118.26 (14)	C16NC15	114.23 (15)

The determination of the absolute configuration was possible from the known R configuration of the sulfoxide group in the starting diene; using the method described by Flack (1983), tha absolute configuration was confirmed by the calculations [*SHELXL93* (Sheldrick, 1993) option applied on non-centrosymmetric space groups]. H atoms were refined as rigid groups using the *AFIX* card of the *SHELXS*93 program.

Data collection: *DIF4* (Stoe & Cie, 1988a). Cell refinement: *DIF4*. Data reduction: *REDU4* (Stoe & Cie, 1988b). Program(s) used to solve structure: *SHELXS86* (Sheldrick, 1990), option *TREF*. Program(s) used to refine structure: *SHELXL93*. Molecular graphics: *ORTEP* (Johnson, 1965).

Lists of structure factors, anisotropic displacement parameters and H-atom coordinates have been deposited with the IUCr (Reference: PA1119). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Bonfand, E., Gosselin, P. & Maignan, C. (1993). Tetrahedron Asymmetry, 4, 1667-1676.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
- Stoe & Cie (1988a). DIF4. Diffractometer Control Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (1988b). REDU4. Data Reduction Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.
- Taschner, M. J. (1989). Asymmetric Diels-Alder Reaction. Organic Synthesis Theory and Application, edited by T. Hudlicky, pp. 1– 101. Greenwich, CT: Jai Press.

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1995). C51, 96-98

5-Ethyl-2'-deoxycytidine, C₁₁H₁₇N₃O₄

Scott Napper

Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada S7N 0W0

Allan L. Stuart, Sashi V. P. Kumar and V. Sagar Gupta

⁽⁴⁷⁾ (12) Department of Veterinary Physiological Sciences,
⁽⁴⁷⁾ (13) University of Saskatchewan, Saskatoon,
⁽⁴⁴⁾ Canada S7N 0W0

LOUIS T. J. DELBAERE

Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada S7N 0W0

(Received 18 October 1993; accepted 18 May 1994)

Abstract

The deoxyribose ring in the title compound adopts the twist conformation $({}_{3}^{2}T)$ with a glycosyl torsion angle of 231.0 (6)°. The pseudo-rotation parameters are $P = 180.29 (5)^{\circ}$ and $\tau_{m} = 38.3 (5)^{\circ}$. The exocyclic side chain at C5' has the t conformation $[\gamma = 174.8 (11)^{\circ}]$. The ethyl group at C5 is on the same side of the pyrimidine plane as the O4' atom of the furanose ring.

Comment

5-Ethyl-2'-deoxyuridine (EtdUrd) has been shown to be a relatively potent inhibitor of herpes simplex virus (types 1 and 2) replication (De Clerq & Rosenwirth, 1985; De Clerq & Shugar, 1975; Schinazi, Scott, Peters, Rice & Nahmias, 1985). 5-Ethyl-2'-deoxycytidine (EtdCyd) was prepared as a potential antiviral agent, based on the potency of EtdUrd (De Clerq & Shugar, 1975; Kulikowski & Shugar, 1974).

A perspective ORTEPII (Johnson, 1976) drawing of the molecule is shown in Fig. 1. The bond lengths and angles of EtdCyd are in the range reported for other 2'-deoxycytidine nucleosides (Young & Wilson, 1975; Kashino, Negishi & Hayatsu, 1988; Low, Tollin, Howie & Wilson, 1988; Sato, 1988; Silverton, Quin & Haugwitz, 1988; Jia, Tourigny, Stuart, Delbaere & Gupta, 1990a). The glycosidic torsion angle $[C2-N1-C1'-O4' 231.0(6)^{\circ}]$ has the anti conformation. EtdCyd exhibits the t conformation $[\gamma = 174.8 (11)^{\circ}]$. Other deoxycytidine analogs that have the t conformation include: 5-methyl-2'-deoxycytidine (Sato, 1988), 5-methoxymethyl- N^4 methyl-2'-deoxycytidine (Jia, Tourigny, Stuart, Delbaere & Gupta, 1990b) and 5-hydroxymethyl-2'-deoxycytidine (Li, Kumar, Stuart, Delbaere & Gupta, 1995). Etd-Cvd adopts the C2'-endo—C3'-exo twist $({}^{2}T)$ conformation. The displacement of the C2' atom from the plane through C1', O4' and C4' is -0.308(14) Å, and that of C3' is 0.317 (15) Å. A pseudo-rotational analysis of the furanose ring torsion angles in terms of two degrees of freedom for ring puckering (Altona & Sundaralingam, 1972) gave a phase angle (P) of $180.29(5)^{\circ}$ and a puckering amplitude (τ_m) of 38.3 (5)°. These results indicate that the deoxyribose moiety of EtdCyd has a typical S conformation. The ethyl group at C5 is on the same side of the pyrimidine plane as the O4' atom of the furanose ring. The pyrimidine ring is nearly planar; the largest deviation from the mean plane is for atom C4 with a displacement of 0.008(7)Å. There are several intermolecular hydrogen bonds which are summarized in Table 3.

Fig. 2. Packing diagram for EtdCyd viewed down the *a* axis of the unit cell; intermolecular hydrogen bonds are represented by dashed lines.

Experimental

Crystal data $C_{11}H_{17}N_3O_4$ $M_r = 255.27$ Orthorhombic $P2_12_12_1$ a = 4.600 (3) Å b = 10.0410 (10) Å c = 24.8350 (3) Å V = 1147.1 (8) Å³ Z = 4 $D_x = 1.478$ Mg m⁻³

Mo $K\alpha$ radiation $\lambda = 0.7107$ Å Cell parameters from 24 reflections $\theta = 10-12.5^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ T = 123 KFlat plate $0.45 \times 0.15 \times 0.08 \text{ mm}$ Colorless Crystal source: vapour diffussion (EtOH/Et₂O)

 $R_{\rm int} = 0.018$

 $\theta_{\rm max} = 24.95^{\circ}$

 $h = -5 \rightarrow 5$

 $k = -11 \rightarrow 11$

 $l = -29 \rightarrow 29$

3 standard reflections

frequency: 83.3 min

intensity variation: 2.7%

Data collection Enraf-Nonius CAD-4 diffractometer $\theta/2\theta$ scans Absorption correction: none 1722 measured reflections 1224 independent reflections 918 observed reflections $[I > 1.5\sigma(I)]$

Refinement

Refinement on F R = 0.054 wR = 0.052 S = 1.18 918 reflections 73 parameters w = 1/[$\sigma^2(F)$ + 0.0007F²] (Δ/σ)_{max} < 0.001 $\begin{array}{l} \Delta\rho_{\rm max} = 0.275 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.381 \ {\rm e} \ {\rm \AA}^{-3} \\ {\rm Extinction \ correction: \ none} \\ {\rm Atomic \ scattering \ factors} \\ {\rm from \ International \ Tables} \\ {\rm for \ X-ray \ Crystallography} \\ (1974, \ Vol. \ IV, \ Table \\ 2.2B) \end{array}$

Table	1. Fractional	atomic	coordinates	and	equivalent
	isotropic di	splaceme	ent paramete	rs (Å	λ^2)

$$U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	у	Ζ	U_{ea}
02	0.5910 (9)	0.3677 (3)	0.2409(1)	0.019 (2)
O3'	0.5434 (9)	-0.0846 (3)	0.1547(1)	0.020 (2)
O4′	0.5145 (9)	0.1900 (3)	0.1050(1)	0.015 (2)
05'	0.2877 (9)	0.1723 (3)	0.0002(1)	0.020 (2)
N1	0.3061 (10)	0.3409 (4)	0.1671 (2)	0.014 (2)
N3	0.2985 (11)	0.5399 (4)	0.2176 (2)	0.016 (2)
N4	0.0036 (12)	0.7109 (4)	0.1951 (2)	0.018(2)
C2	0.4042 (13)	0.4167 (5)	0.2099 (2)	0.015 (3)
C4	0.0967 (13)	0.5874 (5)	0.1843 (2)	0.014 (3)
C5	-0.0100 (13)	0.5144 (5)	0.1392 (2)	0.015 (3)
C51	-0.2254 (13)	0.5719 (5)	0.0992 (2)	0.017 (3)
C52	-0.0716 (15)	0.6589 (5)	0.0573 (2)	0.027(3)
C6	0.0991 (13)	0.3917 (5)	0.1325 (2)	0.017 (3)
CI'	0.4154 (12)	0.2044 (5)	0.1597 (2)	0.012 (3)
C2'	0.1906 (13)	0.0953 (5)	0.1679 (2)	0.015 (3)
C3′	0.3030 (14)	-0.0143(5)	0.1316(2)	0.016 (3)
C4′	0.4129 (13)	0.0638 (5)	0.0836(2)	0.013 (3)
C5′	0.1815 (13)	0.0893 (5)	0.0417(2)	0.016 (3)
HO3'	0.471	-0.102	0.192	01010(0)
HO5'	0.132	0.227	-0.017	
HN4B	0.102	0.775	0.220	

Table 2. Selected geometric parameters (Å, °)

O2—C2	1.255 (7)	N4C4	1.339 (7)
O3'—C3'	1.432 (7)	C4—C5	1.425 (7)
04'—C1'	1.439 (6)	C5-C51	1.517 (8)
04'—C4'	1.450 (6)	C5—C6	1.341 (7)
O5'—C5'	1.413 (6)	C51-C52	1.533 (8)
N1-C2	1.384 (7)	C1'-C2'	1,520 (8)
N1-C6	1.380(7)	C2'-C3'	1.514 (7)
NI—CI'	1.471 (6)	C3'-C4'	1.513 (7)
N3—C2	1.343 (6)	C4'-C5'	1.510 (8)
N3C4	1.332 (7)		1.010(0)
C1'—O4'—C4'	109.3 (4)	C5-C51-C52	111.1 (5)
C2—N1—C6	120.0 (4)	N1-C6-C5	121.1 (5)
C2—N1—C1′	119.9 (4)	04'-C1'-N1	108.7 (4)
C6—N1—C1′	120.1 (4)	04'-C1'-C2'	105.7 (4)
C2—N3—C4	119.6 (4)	N1-C1'-C2'	114.9 (5)
02—C2—N1	118.7 (4)	C1'-C2'-C3'	102.2 (4)
O2—C2—N3	121.4 (4)	O3'-C3'-C2'	112.5 (4)
N1—C2—N3	119.9 (5)	O3'-C3'-C4'	108.3 (5)
N3—C4—N4	115.5 (5)	C2'-C3'-C4'	101.9 (4)
N3—C4—C5	123.0 (5)	O4'-C4'-C3'	105.9 (4)
N4-C4-C5	121.5 (5)	O4'-C4'-C5'	109.3 (4)
C4—C5—C51	122.9 (5)	C3'-C4'-C5'	113.3 (5)
C4—C5—C6	116.2 (5)	05'-C5'-C4'	111.1 (5)
C51—C5—C6	120.9 (4)		(-)

Table 3. Hydrogen-bonding geometry (Å)

$D - H \cdot \cdot \cdot A$	H···A	$D \cdots A$
05'—HO5'···O5' ⁱ	2.08	2.78
O3′—HO3′···O2 ⁱⁱ	1.72	2.71
N4—HN4B···O2 ⁱⁱⁱ	1.95	2.91
		•

Symmetry codes: (i) $\frac{1}{2} + x, \frac{1}{2} - y, -z$; (ii) $1 - x, y - \frac{1}{2}, \frac{1}{2} - z$; (iii) $1 - x, \frac{1}{2} + y, \frac{1}{2} - z$.

The H atoms attached to O5' and O3' were found in a difference synthesis map. All other H atoms were placed by the computer program. H-atom parameters were not refined. U_{iso} of each H atom was assigned as 0.01 Å² + U_{eq} of the atom to which it is covalently bonded.

Data reduction: NRCVAX DATRD2 (Gabe, Le Page, Charland, Lee & White, 1989). Program(s) used to solve structure: NRCVAX SOLVER. Program(s) used to refine structure: NRC-VAX LSTSQ. Molecular graphics: NRCVAX. Software used to prepare material for publication: NRCVAX TABLES (Version of January 94).

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved This research was funded by grants from the Medical Research Council of Canada to VSG (MT-10254) and LTJD (MT-10162).

Lists of structure factors, anisotropic displacement parameters and H-atom coordinates have been deposited with the IUCr (Reference: BK1015). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Altona, C. & Sundaralingam, M. (1972). J. Am. Chem. Soc. 94, 8205-8212.
- De Clerq, E. & Rosenwirth, B. (1985). Antimicrob. Agents Chemother. 28, 246–251.
- De Clerq, E. & Shugar, D. (1975). Biochem. Pharmacol. 24, 1073– 1078.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.
- Jia, Z., Tourigny, G., Stuart, A. L., Delbaere, L. T. J. & Gupta, V. S. (1990a). Can. J. Chem. 68, 836–841.
- Jia, Z., Tourigny, G., Stuart, A. L., Delbaere, L. T. J. & Gupta, V. S. (1990b). Acta Cryst. C46, 2182–2185.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kashino, S., Negishi, K. & Hayatsu, H. (1988). Acta Cryst. C44, 1454-1457.
- Kulikowski, T. & Shugar, D. (1974). J. Med. Chem. 17, 269-273.
- Li, J., Kumar, S. V. P., Stuart, A. L., Delbaere, L. T. J. & Gupta, V. S. (1995). Acta Cryst. In the press.
- Low, J. V., Tollin, P., Howie, R. A. & Wilson, H. R. (1988). Acta Cryst. C44, 2109–2112.
- Rogers, D. (1981). Acta Cryst. A37, 734-741.
- Sato, T. (1988). Acta Cryst. C44, 870-872.
- Schinazi, R. F., Scott, R. T., Peters, J., Rice, V. & Nahmias, A. J. (1985). Antimicrob. Agents Chemother. 28, 552–560.
- Silverton, J. V., Quin, F. R. & Haugwitz, R. D. (1988). Acta Cryst. C44, 321-324.
- Young, D. W. & Wilson, H. R. (1975). Acta Cryst. B31, 961-975.

Acta Cryst. (1995). C51, 98–103

Two Centrosymmetric Conjugated Nitrones of the Diazabutadiene System

PIOTR K. OLSZEWSKI AND KATARZYNA STADNICKA

Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30 060 Krakow, Poland

(Received 7 March 1994; accepted 4 July 1994)

Abstract

The X-ray structures of N-[2-(4-methoxyphenylimino)-2-phenylethylidene]phenylamine N-oxide (N11), C₂₁H₁₈N₂O₂, and N-[2-{4-(N,N-dimethylamino)phenylimino}-2-phenylethylidene]phenylamine N-oxide (N15),